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A B S T R A C T

We develop a method to empirically implement the Schelling model of segregation, and use it to study racial
segregation in Los Angeles schools from 1995 to 2012. Our two-step method combines the estimation of
parents’ preferences for their children’s peers with a counterfactual simulation analysis. We find substantial
heterogeneity in the existence and locations of tipping points and stable equilibria. Schools are observed on
equilibrium trajectories, but many remained out of equilibrium by 2012. We also introduce novel instru-
mental variables to identify preferences for endogenous peer groups that require no additional data and can
be used in other educational settings.
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1. Introduction

Birds of a feather flock together. Social forces draw similar peers
to one another in diverse settings, often resulting in the segregation
of individuals, which has important consequences for their behav-
ior and well being. The Schelling model (Schelling, 1969, 1971) offers
the seminal theoretical framework for the analysis of segregation in
the social sciences. It has been used to study a variety of contexts,
from racial segregation in neighborhoods and schools to gender seg-
regation in occupations. In this paper, we develop a novel method to
empirically implement the Schelling model, and we use it to study
racial segregation among White, Black and Hispanic students in Los
Angeles County public schools.

Dating at least as far back as the U.S. Supreme Court’s landmark
decision in Brown v. Board of Education of Topeka (1954), school
segregation has occupied a prominent position in the public policy
debate. Through the lens of the Schelling model, parents of different
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races respond differently to the prior observed racial compositions
of schools when making enrollment decisions for their children. This
may create a self-reinforcing, positive-feedback mechanism whereby
the shares of minority students in schools change in each year as par-
ents respond to the new racial composition. For example, if White
parents have a stronger preference for White peers relative to minor-
ity parents, then there exists a threshold minority share above which
a school will “tip” towards a stable equilibrium with a high share
of minority students and below which a school will “tip” towards a
stable equilibrium with a low share of minority students. This thresh-
old is commonly referred to as a tipping point, and it represents an
unstable equilibrium as even a slight perturbation around this point
may lead to very different long-run racial compositions of the same
school.

Despite considerable theoretical developments to the Schelling
model (e.g. Becker and Murphy, 2000; Pancs and Vriend, 2007;
Zhang, 2009), there have been few empirical developments in imple-
menting this model to identify tipping behavior using observational
data. An important reason for this disparity is the fact that the
Schelling model obtains a concise explanation for segregation by
assuming individual agents behave according to some plausible
heuristics. Although the simplicity of this approach is appealing, it
is not amenable to the traditional empirical tools that have been
developed to identify preferences and equilibria in models of school
and neighborhood choice beginning with McFadden (1973) (e.g.,
Bayer et al., 2007, 2004; Bayer and Timmins, 2005). However, these

http://dx.doi.org/10.1016/j.jpubeco.2017.02.009
0047-2727/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jpubeco.2017.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpube
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpubeco.2017.02.009&domain=pdf
mailto: gregorio.caetano@rochester.edu
mailto: vmaheshri@uh.edu
http://dx.doi.org/10.1016/j.jpubeco.2017.02.009


116 G. Caetano, V. Maheshri / Journal of Public Economics 148 (2017) 115–135

very empirical models of school and neighborhood choice may be
inappropriate to analyze tipping behavior because they assume that
households’ choices are observed in equilibrium, i.e., in the absence
of further shocks the racial composition of schools/neighborhoods
will remain fixed. This assumption stands in contradiction to a cen-
tral insight of the Schelling model that at any given point, schools
and neighborhoods may be observed in the process of tipping –
in disequilibrium, but converging to an equilibrium – rather than
already having reached a stable, long run equilibrium.

Recently, Card et al. (2008a) have circumvented these issues with
a reduced-form approach to identify tipping points in neighborhoods
and schools as thresholds around which the flows of both Whites
and minorities are qualitatively different. They argue that if the
share of minority households (students) in a neighborhood (school)
exceeds a tipping point, then it will experience relative outflows
of White households (students), and vice versa.1 However, the
simplicity of this approach is not without cost, as any such reduced
form identification strategy must assume that all schools or neigh-
borhoods possess a common, fixed tipping point – an assumption
that is generally invalid if schools or neighborhoods offer differ-
ent or changing levels of amenities (Banzhaf and Walsh, 2013).2 As
a motivating example, we present the racial composition of two
Los Angeles County schools over time in Fig. 1. Each school starts
from a roughly equal composition of White and Hispanic students,
but starting in 1990, their compositions evolve in different direc-
tions. Gardner Street Elementary becomes a predominantly White
school while Fulbright Avenue Elementary becomes a predominantly
Hispanic school. This disparity is inconsistent with the assumption
that these two schools in the same city possess common tipping
points.

In this paper, we provide empirical micro-foundations to the
Schelling model by building upon the literature on neighborhood
choice (e.g., Bayer and Timmins, 2005; Bayer and McMillan, 2010),3

with the key difference that our method allows for individuals’
choices to be observed out of long-run equilibrium. This is an
empirically important feature, as the observed enrollment dynamics
displayed in Fig. 1 are indicative of adjustment paths to new equi-
libria. Our empirical framework for studying tipping behavior offers
four main innovations over existing approaches: First, we provide
a method to infer race-specific preferences for the racial composi-
tion of peers from enrollment data. Second, we are able to identify
all potential stable equilibria in addition to tipping points, which
enables us to infer how far out of equilibrium the racial composition
of each school is at any point in time. Third, our method allows for
different schools to have different tipping points and stable equilib-
ria. Schools with different characteristics, such as teachers, locations
or funding levels, generally feature different tipping points and stable
equilibria (Banzhaf and Walsh, 2013), so allowing for this hetero-
geneity lends credibility and realism to our estimates. Fourth, our
method builds upon the discrete choice literature on neighborhood
and school choice (e.g., Bayer and Timmins, 2005; Bayer et al., 2007;
Bayer and McMillan, 2010), so it can flexibly accommodate many

1 Pryor (1971) conducts a similar empirical exercise using a related approach.
2 Easterly (2009) takes an alternative reduced form approach to identify tipping

behavior that also relies on the assumption that all neighborhoods possess a common,
fixed tipping point.

3 As discussed in Bayer and Timmins (2005) and Bayer and Timmins (2007), one
important difference between the neighborhood choice literature and the discrete
choice social interaction literature (e.g., Brock and Durlauf, 2001a; Brock and Durlauf,
2001b; Blume and Durlauf, 2003) is that the former literature explicitly accounts
for unobservable school amenities that are correlated across individuals, which are
known to be empirically relevant to location choice (Bayer et al., 2007; Caetano,
2016). Because of this difference, these literatures generally apply to distinct economic
environments. For instance, in the discrete choice social interaction literature, the
number of choices is fixed and is often binary, whereas in the literature on school and
neighborhood choice, asymptotic results require the number of options to be large.

extensions to the Schelling model by easily borrowing tools from this
well established literature.

Our framework is motivated by the idea that tipping behavior in
a school can only be fully identified by analyzing the dynamic pro-
cess of segregation from multiple initial states even though the racial
composition of that school is only observed at a single initial state.
This indicates a two-step structural approach that first estimates
how the racial compositions of schools will evolve as a function of
their initial states and subsequently simulates these trajectories from
various counterfactual initial states. This allows us to uncover tipping
behavior in the aggregate.

In the first step, we use school enrollment data to estimate sep-
arately White and minority parents’ preferences for the racial com-
position of their children’s schools.4 This requires solving the widely
known identification problem of isolating endogenous social effects
from confounding effects (Manski, 1993), which we accomplish with
a novel instrumental variables (IV) approach.

In the second step, we use these estimates to simulate the implied
racial compositions of each school under different counterfactuals.
For any counterfactual level of the share of minority students in a
school in a given year, we compute the ensuing share of minority stu-
dents that is implied under this counterfactual by allowing parents to
re-sort holding all other school amenities constant. It is then straight-
forward to recover the unique tipping points and stable equilibria for
each school in each year from the simulated schedules of their racial
composition.5 Unlike previous empirical approaches, our framework
allows us to identify for each school and year the full trajectory of
tipping behavior in the absence of external shocks, which can inform
policies that aim to impact school segregation.

We perform our analysis on a sample of all students enrolled in
public schools in Los Angeles County from 1995 to 2012 and find
that race based tipping is a widespread and diverse phenomenon.
Parents prefer peers of their own race, particularly in higher grades.
Elementary schools rarely have tipping points, but most middle and
high schools do with their locations ranging from a minority share
of 20% to a minority share of 80% depending on the school’s char-
acteristics. All stable equilibria are highly segregated; one group of
equilibria range from 0% to 20% minority, and another group of equi-
libria ranges from 80% to 100% minority. In high schools, social forces
are so strong that two otherwise similar schools may converge to
equilibria that differ by up to 100 percentage points. The minority
shares of schools have moved closer to a stable equilibrium during
the sample period; however, many schools had not yet converged to
a stable equilibrium by 2012: about 20% of schools were observed
out of equilibrium by at least 20 percentage points of their minority
share of enrollment.

We extend our analysis by allowing parents to have heteroge-
neous preferences for Black and Hispanic peers. This more complex
and realistic model implies higher-dimensional dynamic behavior
and enables us to distinguish potential tipping to segregated Black
equilibria from potential tipping to segregated Hispanic equilib-
ria, even within the same school. Overall, we find that our base-
line results provide an accurate, if simplified, portrayal of school
segregation in LA County.

4 Ioannides and Zabel (2008) estimate households’ preferences for a variety of other
social amenities in a nested model of neighborhood and house choice.

5 Bayer and Timmins (2005) present a different simulation technique to identify
multiple equilibria in the context of social interactions under the assumption that
choices are observed in equilibrium. Bayer and McMillan (2010) estimate an equilib-
rium model of school choice and provide a simulation technique to estimate measures
of school competition, but they do not consider social interactions. In a computational
study of residential segregation, Bruch and Mare (2006) simulate flows of White and
minority residents between neighborhoods under a variety of assumptions, but they
do not empirically identify tipping points or stable equilibria.
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Fig. 1. Racial composition of enrollment for two selected schools, 1984–2010.
Source: Common Core of Data, US Department of Education.

Racial segregation has been studied predominantly in schools and
neighborhoods. We implement our empirical method in the context
of school segregation for three reasons. First, our IV exploits the fact
that school enrollments are stratified by grade. Second, the timing of
the school decision (annually) is clearer. In the case of neighborhood
choice, for example, households moving at the beginning of a cal-
endar year may observe different minority shares than households
moving at the end of the year. Third, the analysis of tipping requires
relatively high frequency data. Public schools are required by federal
law to report the racial composition of their enrollment annually,
whereas the racial composition of neighborhoods is only available
at a lower frequency. Thus, we follow a long empirical and theoret-
ical literature that has analyzed the causes (Echenique et al., 2006;
Frankel and Volij, 2011) and effects of school segregation (Jackson,
2009; Boustan, 2012; Billings et al., 2012) and has established school
segregation as an important topic in its own right. We do provide
suggestive empirical evidence that school segregation is a distinct
phenomenon that is occurring over and above any underlying neigh-
borhood segregation, but a satisfactory joint analysis of school and
neighborhood segregation is beyond the scope of this paper.

The remainder of the paper is organized as follows. In Section 2,
we briefly introduce the Schelling model of segregation to highlight
the inherent challenges in identifying tipping points and stable equi-
libria. In Section 3, we present a two stage empirical strategy that
identifies tipping behavior through estimation and simulation, and
in Section 4, we propose a novel instrumental variables approach
to facilitate estimation. In Section 5, we describe our data set and
present our main empirical results. In Section 6, we interpret our
empirical findings in the context of the Schelling model. In Section 7,
we extend our analysis further by considering higher dimensional
tipping between White, Black and Hispanic students. We conclude
by highlighting some directions for future research.

2. Identification of tipping points and stable equilibria

The seminal Schelling (1969) model of segregation and its suc-
cessors share two key features that have important theoretical and
empirical implications for tipping behavior. First, for tipping to occur,
groups must have different preferences for the racial compositions of
schools.6 This difference in preferences is necessary but insufficient

6 Zhang (2009) generalizes Schelling’s model and shows that even when individuals
have a preference for integration in the aggregate, a slight difference in the preferences
of two groups can still lead to fully segregated equilibria.

to generate tipping behavior. Second, since tipping is characterized
as a dynamic adjustment process, there must exist some friction
that ensures that agents do not always immediately take equilibrium
actions. In the Schelling model, this friction arises because agents are
cast as myopic decision makers.7

The Schelling model differs from many standard economic mod-
els in that it describes the aggregate phenomenon of segregation
through a framework in which individual agents make decisions
according to simple heuristics. Becker and Murphy (2000) offer an
alternative representation of the model that is instead based upon
the standard economic primitives of preferences for peer groups,
which we use to motivate the empirical challenges in identifying
tipping points and stable equilibria.

Suppose there are two groups of parents indexed by r, where
r = W if the parent is White and r = M if the parent is a minority. At
the beginning of each school year, parents choose a school for their
child to attend. Parents observe a set of amenities for each school
j: an endogenous social amenity sj, which represents the minority
share in the school, and an exogenous vector of other amenities Xj,
which may include such factors as other characteristics of the school,
the (implicit) price of attending the school, and characteristics of
competing schools. Parents are assumed to be myopic; that is, they
observe each amenity at its level at the end of the previous school
year and select their school for the upcoming year without taking
into account the simultaneous decisions of other parents. Aggregate
parental demand functions can be written as nr

j (s, X), which represent
the total number of parents of race r who demand to send their child
to school j. The resulting minority share in school j in the next school
year will be

Sj
(
sj, Xj

)
=

nM
j

(
sj, Xj

)

nW
j

(
sj, Xj

)
+ nM

j

(
sj, Xj

) . (1)

It is important to note that the function in Eq. (1) has a causal
interpretation: for a given Xj, changes in sj change the demands of
Whites and minorities, which in turn change Sj.

Fig. 2 illustrates a theoretical plot of Sj(s, Xj) for particular demand
curves nW

j (s, Xj) and nM
j (s, Xj). Values of s where the curve crosses the

7 Myopia is assumed in several spatial models of learning in urban economics and
economic geography (e.g., Maskell and Malmberg, 2007). Kandori et al. (1993) jus-
tify myopia in models of social interactions if agents have difficulty conceptualizing
the best responses of others. Levinthal and March (1993) provide an overview of the
theoretical and empirical literature on myopia in learning.
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Fig. 2. Theoretical illustration. Note: This figure depicts a curve representing the
resulting minority share in school j (Sj) that is implied by the parental response to
different values of the prior minority share (s).

45-degree line (i.e., Sj(s, Xj) = s) are equilibria; for these values of s,
the minority share of students at the school is not expected to change
in the next period in the absence of shocks. A tipping point, or unsta-
ble equilibrium, is a point that crosses the 45-degree line from below,
and a stable equilibrium is a point that crosses the 45-degree line
from above.8 At a stable equilibrium, small deviations of s will result
in Whites and minorities re-sorting in such a way that the minority
share will return to the stable equilibrium level. At a tipping point,
small deviations of s will result in Whites and minorities re-sorting
in such a way that the minority share will diverge from the tipping
point towards a stable equilibrium.

Empirical identification of tipping points and stable equilibria is
complicated by the fact that the demand schedules of the groups may
be difficult to recover. The identification is further complicated if par-
ents face a multinomial choice rather than a binary choice, as Xj will
include not only school j amenities but also the amenities of other
schools (including the share of minority students in these schools).
However, Fig. 2 suggests a natural reduced-form approach to iden-
tify tipping points without the specification of all relevant demand
functions, which has been implemented by Pryor (1971), Card et
al. (2008a) and Pan (2015). We describe this approach, discuss its
drawbacks and then propose our alternative identification strategy.

Suppose sj is observed for two periods, t and t + 1, in the sample
of all schools in a given city, all of which share a common tipping
point. One could plot sjt+1 on sjt for all j on a single set of axes as in
Fig. 2. Tipping points could be identified as values of sjt for which the
plotted curve crosses the 45 degree line from below.

This identification strategy relies on two strong assumptions.
First, all schools in the sample must share a common tipping point
at period t. To see this, note that the entire sample of schools in the
city is used in order to identify a single point. But to the extent that
schools offer different levels of private amenities to their students
(i.e., Xj �= Xk), the demand schedules of parents for different schools
are not generically the same, so in general this assumption will be
invalid. The second assumption underlying this reduced-form iden-
tification strategy is that all amenities in Xj must remain fixed from

8 Points at which the curve Sj crosses the 45-degree line from above with a negative
slope are not necessarily stable equilibria. For values of s around these points, we will
observe oscillating dynamics that can lead to either convergence towards the crossing
point or divergence from it depending on the steepness of Sj . As we do not observe
these more complex dynamics in our baseline empirical analysis, we ignore them for
simplicity.

periods t to t + 1 since each point in the plot is an ordered pair
(sjt, sjt+1) that is assumed to reflect an identical school in all respects
besides minority share. But Xjt �= Xjt+1 in general, so tipping points
and stable equilibria are likely to change from t to t + 1. This com-
plicates the interpretation of any fixed point approach that equates
shares of minority students in periods t and t + 1.

The key empirical takeaway from this discussion is that hetero-
geneity in tipping behavior is derived from heterogeneity in the
levels of private amenities in the schools as opposed to heterogeneity
in parental preferences (Banzhaf and Walsh, 2013).9 Hence, all
approaches to identify tipping behavior that implicitly assume a
common tipping point across any subset of schools must also assume
that those schools possess identical, fixed levels of private amenities;
otherwise it may be difficult to attribute the findings to an underlying
tipping mechanism.

In order to avoid these assumptions, we develop a structural
approach to recover tipping behavior in which we essentially con-
struct Fig. 2 separately for each school and each year.

3. An empirical approach to identify tipping behavior

Our empirical approach has two steps, which can be summarized
as follows: First, we estimate separate demand schedules nW

jt (s) and
nM

jt (s) for each school j in each year t. Importantly, we allow Whites
and minorities to have different preferences for the racial composi-
tion of schools. We use instrumental variables based on inter-cohort
variation in enrollments to identify the causal effects of s on the
demands of parents of each race and grade level. With estimates of
these causal effects, we can simulate Sjt(s) as a ceteris paribus func-
tion of any counterfactual value of the share of minority students
in that school in a given year, allowing parents to re-sort across all
schools and holding Xjt constant. That is, we construct Sjt by simu-
lating movements along parents’ demand schedules. The simulated
function Sjt(s) should be interpreted as the minority share that is
implied by the counterfactual s in the absence of any shocks. Hav-
ing identified the entire curve Sjt(s), it is straightforward to recover
tipping points and stable equilibria for each school in each year.

3.1. Step 1: Estimating parental preferences for minority peers

In year t, ngr
jt children of race r enroll in one of the public schools

that offer instruction in grade g in LA County. The minority share of
students at school j is given by

sjt =

∑
g∈Gj

ngM
jt

∑
g∈Gj

(
ngM

jt + ngW
jt

) (2)

where Gj =
{

g
j
, . . . , ḡj

}
is the range of grades for which school

j offers instruction. Parents enroll their children in year t having
observed school amenities at the end of year t − 1. In accordance
with the Schelling model, parents do not strategically extrapolate

9 It is difficult to interpret the discontinuities found in Card et al. (2008a) as tipping
points for two reasons. As the running variable (minority share in the prior period)
changes, the unknown point of discontinuity will likely change with it, complicating
the interpretation of discontinuities as tipping points. Moreover, in a deviation from
standard Schelling models, Card et al. (2008a) define tipping points as any level of s
for which the curve Sj is discontinuous (as recognized by Card et al., 2008a, these are
usually referred to as bifurcation points) in order to employ regression discontinuity
methods to identify structural breaks.
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other parents’ future enrollment decisions when making their own,
so dynamic adjustment unfolds at a year-by-year pace.10

Parental demand is written as

log ngr
jt = bgrsjt−1 + ugr

jt (3)

where the parameters bgr represent the preferences for the racial
composition of schools and ugr

jt is an error term.11

The two terms on the right hand side of Eq. (3) correspond to
distinct sources of dynamics in school choice. The first term describes
an explicit endogenous relationship between the prior minority
share in schools and the current race-specific demands for schooling.
This relationship is often referred to as the endogenous social effect
and is precisely the source of dynamics that is prescribed by the
Schelling model. It represents the response of parents to the prior
minority share of the school per se. The second term accounts for all
other determinants of grade and race specific demands. To identify
bgr, we need to isolate the response of parents to the prior minority
share per se from their response to all other determinants that might
be correlated to the prior minority share. We do so with a novel
instrumental variables approach that we outline below.

Consider a school that offers instruction in grades g ∈ {g
j
, . . . , ḡj}.

We modify Eq. (3) as

log ngr
jt = bgrsjt−1 +

ḡj−1∑
i=gj

(
a

gr
iW log niW

jt−1 + a
gr
iM log niM

jt−1

)

︸ ︷︷ ︸
Cgr

jt−1

+ 4
gr
jt , (4)

where Cgr
jt−1 represents the year t − 1 log-enrollments of all races

for all grades of the school, except the last grade. Let s
ḡj−1
jt−2 =

n
ḡj−1M
jt−2

/ (
n

ḡj−1W
jt−2 + n

ḡj−1M
jt−2

)
be the minority share of students in grade

ḡj − 1 in school j in year t − 2. Our identifying assumption is that s
ḡj−1
jt−2

is an instrumental variable for sjt−1, conditional on Cgr
jt−1:

Assumption 1. Identifying assumption. Cov
[
s

ḡj−1
jt−2 , 4gr

jt |Cgr
jt−1

]
= 0.12

Intuitively, s
ḡj−1
jt−2 is determined by school amenities in t − 2 that

either do or do not persist to t. The persistent amenities are endoge-
nous, so we must control for them; the transitory amenities are
exogenous and constitute clean identifying variation. By adding Cgr

jt−1
as controls, we absorb the persistent amenities without absorbing
the transitory ones. Our identifying assumption is that amenities that
do not persist from t − 2 to t − 1 do not suddenly become relevant
again in t. Under Assumption 1, bgr is consistently estimated in Eq.
(4) by 2SLS.13

10 This assumption serves the additional purpose of helping us break the simultane-
ity problem present in equilibrium choice models with social interactions (Manski,
1993) since sjt−1 is not a function of ngr

jt , but sjt is. We find strong support for this
assumption in Section 5.
11 We specify the racial composition of the school instead of the racial composi-

tion of a particular grade as the main explanatory variable for two reasons. First, it is
easier for parents to observe the racial composition of the school than of a particular
grade. This is true whether they look at school report cards or whether they visit the
school and physically observe the student body. Second, parents may care about social
interactions that happen across grades (e.g., an atmosphere of bullying).
12 This assumption contains an abuse of notation in order to simplify the exposition.

We condition on the variables in
{

log ngr
jt−1; g = g

j
, . . . , ḡj − 1, r = W , M

}
, not on Cgr

jt−1
as written above. In practice, we find that a linear projection of these variables and a
more flexible specification of these variables generate the same results.
13 An IV that follows this property is often called a “Conditional IV”. See Angrist and

Pischke (2009, pp. 175).

3.2. Step 2: Recovering tipping points and stable equilibria

In the second step, the estimates of bgr are used to simulate the
implied minority share function Sjt(s).14 We simulate Sjt(s) in the
absence of shocks from t to t + 1, which corresponds to an environ-
ment in which fixed points of Sj(s) correspond to tipping points and
stable equilibria. This procedure allows us to identify tipping points
and stable equilibria for each j and t even though school amenities
are not necessarily fixed over time or common to schools. We first
construct the counterfactual demand function

ngr
jt (s) = exp

(
log

(
ngr

jt

)
+ b̂gr (

s − sjt−1
))

(5)

which represents the expected number of race r students that would
enroll in grade g in school j in year t for a given counterfactual value
of sjt−1 = s.15 In order to ensure that the total student population
of LA County remains constant for each level of the counterfactual
minority share, we rescale Eq. (5) as follows16:

ñgr
jt (s) =

ngr
jt (s)

ngr
jt (s) +

∑
k�=j

ngr
kt

•
∑

k

ngr
kt (6)

The implied share of minority students is then defined as

Sjt(s) =

ḡj∑
g=gj

ñgM
jt (s)

ḡj∑
g=gj

(
ñM

jt (s) + ñW
jt (s)

) (7)

The numerator of Eq. (7) is the number of minority students that
would enroll in school j if its minority share was previously s, and
the denominator is the total enrollment of school j if its minority
share was previously s. A plot of Sjt on s is the empirical analog to
Fig. 2. Each point of the simulated curve Sjt(s) corresponds to the
implied minority share for school j at time t under the counterfactual
assumption that sjt−1 = s. Note that the only source of dynamics that
we use to identify Sjt is the endogenous social effect, since our simu-
lation is performed in the absence of other sources of dynamics (i.e.,
we hold ugr

jt fixed).
In period t, school j possesses either a tipping point or a stable

equilibrium at any level of s where Sjt(s) = s. This equation does not
generally possess an analytical solution, so we use a simple numer-
ical technique to estimate tipping points and stable equilibria. We
allow s to take on values ranging from 0 to 1 in increments of 0.01,
and at each value of s, we simulate Sjt using Eq. (7). We then plot
these simulated shares Sjt on s and locate the value(s) of s for which
the plot crosses the 45 degree line. A value of s for which the simu-
lated function Sjt crosses the 45-degree line from below (i.e., S′

jt > 1)
represents a tipping point s�, and a value of s for which it crosses

14 To simplify the notation, we refer to Sjt(s, Xjt−1) as Sjt(s) hereafter. This is without
loss of generality as Xjt−1 is held constant in the simulation.
15 Note that the variable ngr

jt represents the actual number of students in the data,
while the function ngr

jt (s) represents the implied number of students for a counter-
factual level of the prior minority share. Hats correspond to estimated parameters.
Taking logs of both sides of Eq. (5) hence yields the implied empirical analog of parental
demand as written in Eq. (3) under the assumption that ugr

jt = 0.
16 In practice, the rescaling in Eq. (6) is unimportant

(
ñgr

jt (s) ≈ ngr
jt (s)

)
because of the

large number of public schools in LA County. We do it primarily to maintain the equiv-
alence between the estimation approach described in the main text and the discrete
choice estimation approach described in the appendix.
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the 45-degree line from above (i.e., S′
jt < 1) represents a stable

equilibrium s��.17

4. Instrumental variables

In this section, we discuss the intuition behind the IV that we use
in the first step of our empirical approach.

Consider a grade 9–12 high school with an outstanding band
director who retired three years ago. Her past work may still indi-
rectly affect new enrollments today through the enrollments of
students that had the privilege of her instruction. The band direc-
tor affected the enrollments of 9th graders in t − 4 who eventually
became 12th graders in t − 1. If the band director was valued differ-
ently by White and minority parents, then her past presence would
affect sjt−1, which in turn would affect student enrollments in t. This
effect is entirely transmitted through the single cohort of remain-
ing students that she influenced – 12th graders in t − 1. Because this
cohort of students will not be enrolled in t– they have aged out – any
remaining effect of the band director on student enrollments in t is
plausibly exogenous.

Of course, this band director is a stylized example, and we cannot
observe a comprehensive list of specific past amenities that no longer
remain. We circumvent this issue with an identification strategy that
relies only on enrollment data at the grade-year level. We explain our
strategy as follows: First, note that the 11th grade students in t−2 do
not attend the school in t because they have aged out. This allows us
to use the minority share of this cohort of students, the IV cohort, as
an instrument since these students do not show up in the dependent
variable. Second, note that the amenities that led students in the IV
cohort to enroll in t − 2 may or may not be present in t. In order
to absorb any confounding amenities that persisted to t, we use the
enrollments of the younger control cohorts in t − 1 (when they are
in grades 9–11) as control variables. By doing so, our instrument is
comprised of only those amenities that caused the IV cohort to enroll
in the past and did not directly cause any subsequent cohort to enroll.

We summarize our strategy for the example of the 9–12 high
school in the diagram below. Our IV is s11

jt−2, the minority share of the
second highest grade in t − 2. For our IV to be valid, we control for
the t − 1 enrollments of Whites and minorities in all grades except
for the highest grade (i.e., grades 9, 10 and 11). Because we cannot
control for the t−1 enrollments of Whites and minorities in the high-
est grade (since no variation in sjt−1 would remain), we use the IV
cohort’s enrollments in t − 2 to ensure we are not identified off of
persistent amenities specific to the highest grade.

9th 10th 11th 12th

t Dep. var. Dep. var. Dep. var. Dep. var.
t − 1 Control Control Control
t − 2 IV

This logic is valid for any school that offers instruction for at least
two grades, irrespective of its grade range. For any school that offers
more than two grades of instruction, we can construct additional IVs

17 Schools that are observed at off-equilibrium points will not necessarily converge
over time to their corresponding stable equilibrium because the S curve may change
over time. For each t = 1, 2, . . ., the curve may change for either of the following two
reasons: First, there may be future school-level shocks

(
l

gr
jt+t

)
, which will imply an

exogenous shift in the curve at t + t. Second, as parents re-sort from off-equilibrium
points in other schools from t + t − 1 to t + t due to tipping, the curve of school j will
shift endogenously in response. As such, our simulation procedure should be inter-
preted as providing a snapshot of the S curve of each school at period t. Because of the
large number of schools in our sample, this computationally simple partial equilib-
rium analysis is plausibly valid. In principle, our simulation procedure can be modified
to account for the endogenous shifts in a general equilibrium analysis.

from the minority shares of the third highest grade in t − 3, or the
fourth highest grade in t − 4, etc.

4.1. Is the identifying assumption satisfied?

Assumption 1 fails to hold only if there exist unobservables that
satisfy the following three properties:

1. They affect enrollment decisions in t (i.e., they are included in
4

gr
jt in Eq. (4)).

2. They are correlated to the minority share of grade ḡj −1 in t−2
(i.e., they are correlated to our IV).

3. They are not correlated to enrollment decisions of any race in
any of the grades g

j
, . . . , ḡj−1 in t−1 (i.e., they are not absorbed

by Cgr
jt−1).

To justify our identification strategy, we consider an unobserv-
able that satisfies the first two properties and then argue that it
does not plausibly satisfy the third property. This unobservable is an
amenity that is either unique to grade ḡj in t − 1, or it is an amenity
that is not unique to grade ḡj in t − 1.

Any amenity that is unique to grade ḡj in t − 1 will fail to satisfy
property 3 if students in some grade g < ḡj in t − 1 anticipate the
amenity will be present in t. This is likely because the amenity must
be present in t (property 1), and must be anticipated by students of
different races in grade ḡj − 1 in t − 2 (property 2).

Any amenity that is not unique to grade ḡj in t − 1 is valued by
at least some students enrolled in some grade g < ḡj in t − 1. As a
result, it will fail to satisfy property 3. For instance, imagine that a 9–
12 high school features a good library in t (property 1), and that the
library is valued in t − 2 by 11th grade students (property 2). As long
as the library is valued by students in any of the control cohorts (i.e.,
students of any race in grades 9, 10 or 11 in t − 1), property 3 will fail
to hold.

There are a few potential issues with our identification strategy.
One important consideration is whether a log-linear specification
such as Cgr

jt−1 fully absorbs the enrollments of students in the con-
trol cohorts. A second potential consideration is that students in the
IV cohort might systematically repeat the last grade of the school. A
third potential consideration is whether students in the first grade of
the school in t (who are not directly controlled for by Cgr

jt−1 because
they did not attend that school in t − 1) pose any threat to our iden-
tification. Finally, a fourth potential consideration is that students of
the IV cohort may have younger siblings who enter the same school
in t.

We empirically address all these potential concerns with robust-
ness checks in Appendix B. We conduct falsification tests because
we have multiple IVs for most schools in our sample since they offer

more than two grades of instruction: s
ḡj−1
jt−2 , s

ḡj−2
jt−3 , s

ḡj−3
jt−4 , . . . Because

these alternative IVs contain the same cohort specific variation
but different grade specific variation, a comparison of the differ-
ent IV estimates amounts to a test of whether Cgr

jt−1 controls for
the (potentially confounding) grade specific variation component of
these IVs. The availability of additional IVs also allows for a for-
mal over-identification test (Hansen, 1982) of Assumption 1. The
results of all of these tests and robustness checks strongly support
our identification strategy.

5. Data and results

5.1. Sample

We construct a sample of every public school in Los Angeles County
that offered instruction in any grade from kindergarten through 12th
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Fig. 3. Enrollment, racial composition and instruction in Los Angeles county schools, 1993–2012. (a) Total enrollment by race over time. (b) Histogram of minority share. (c)
Minority share within schools over time. (d) Grade ranges. Note: Panel (b) shows a histogram of the minority shares in all school-years of the sample. In Panel (c), each dot
represents a school. For each school, we present the minimum and maximum minority shares observed during the sample period. In Panel (d), each cell corresponds to the number
of school-year observations in our sample for a given grade range. For example, we observe 4290 school-year combinations that offer instruction from grades 9 to 12.
Source: California Department of Education.

grade for all years between 1993 and 2012.18 For each of the 2196
schools in the sample, we obtain grade and race level enrollment
statistics from the California Basic Educational Data System (CBEDS)
maintained by the California Department of Education.19

Over the sample period, LA County public schools experienced
substantial changes in the aggregate racial composition of enroll-
ments, which we present in the first panel of Fig. 3. Despite our
terminology, the number of minority students enrolled in LA County
public schools greatly exceeded the number of (non-Hispanic) White
students in all years. A small absolute decline in White and Black
enrollment was accompanied by substantial Hispanic inflows into

18 For our purposes, “year” refers to academic year by registration date, not calendar
year. For example, 2012 corresponds to the Fall 2012–Spring 2013 academic year.
19 Individual level student data for LA County is unavailable in restricted or

unrestricted formats.

the public school system until 2003.20 Although a Public School
Choice (PSC) resolution was adopted by LAUSD, the predominant
school district in LA County, prior to the 2009–2010 academic year,
fewer than 3% of students exercised school choice through the pro-
gram as of 2012.21 In addition, the first charter school in LA Country
was approved in 1993 programs, and over 200 charters were oper-
ating in LA Country in 2012. These changes to the public school
environment during our sample period, both demographic and insti-
tutional, underscore the importance of the use of time-varying (and
race-, neighborhood- and grade-varying) fixed effects in our analysis.

20 Enrollment trends are qualitatively similar across grades. The observed decline in
White enrollment is probably due to declining fertility rates, as total private school
enrollment in Los Angeles County decreased from roughly 220,000 students in 1999 to
160,000 students in 2012. Private school enrollment data prior to 1998 is not publicly
maintained. (Source: CBEDS data collection, 1999–2000 and 2012–2013 Private School
Affidavits.)
21 Source: LAUSD Board of Education website.
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Table 1
Parental demand for schooling, 1995–2012: Baseline parameter estimates.

(1) (2)

OLS 2SLS

r: W M W M

bKr −6.33∗∗ 3.34∗∗ −4.40∗∗ 1.71∗∗

(0.21) (0.13) (0.27) (0.14)
b1r −6.76∗∗ 3.27∗∗ −2.50∗∗ 1.24∗∗

(0.23) (0.13) (0.24) (0.13)
b2r −6.51∗∗ 3.20∗∗ −2.26∗∗ 0.89∗∗

(0.22) (0.14) (0.30) (0.15)
b3r −6.76∗∗ 3.22 −2.55∗∗ 0.90∗∗

(0.24) (0.16) (0.23) (0.15)
b4r −6.84∗∗ 3.08∗∗ −2.49∗∗ 1.00∗∗

(0.25) (0.16) (0.24) (0.13)
b5r −6.76∗∗ 3.00∗∗ −2.36∗∗ 1.35∗∗

(0.24) (0.16) (0.24) (0.15)
b6r −5.04∗∗ 3.86∗∗ −2.96∗∗ 2.70∗∗

(0.44) (0.35) (0.47) (0.36)
b7r −4.40∗∗ 4.33∗∗ −3.15∗∗ 3.22∗∗

(0.65) (0.58) (0.76) (0.66)
b8r −5.71∗∗ 4.53∗∗ −2.78∗∗ 4.22∗∗

(0.65) (0.56) (0.81) (0.58)
b9r −12.24∗∗ −0.78 −4.56∗∗ 0.05

(1.03) (0.71) (1.06) (0.68)
b10r −12.34∗∗ −1.22* −4.74∗∗ 0.32

(0.83) (0.60) (0.90) (0.63)
b11r −9.62∗∗ 0.65 −3.98∗∗ 2.23∗∗

(0.69) (0.52) (0.81) (0.53)
b12r −9.72∗∗ 0.44 −4.62∗∗ 1.50∗∗

(0.67) (0.40) (0.86) (0.55)
Controls? No Yes

IVs? – s
ḡj−1
t−2

Grade-race-year-ZIP FEs Yes Yes
R2 0.56 0.43
Num. obs. 362,516 361,866

Notes: The dependent variable is log enrollment by grade, race, school

and year
(

log ngr
jt

)
. Specification (2) includes log n

gjW

jt−1, . . . , log n
ḡj−1W
jt−1 and

log n
gjM

jt−1, . . . , log n
ḡj−1M
jt−1

(
i.e., Cgr

jt−1

)
as controls. Robust standard errors clustered by

grade, race, year and ZIP code are provided in parentheses.
∗ Statistically significant at the 95% level.

∗∗ Statistically significant at the 99% level.

At the school level, we observe substantial cross-sectional and
longitudinal variation in minority shares. In the second panel of
Fig. 3, we present a histogram of sjt for all schools and years in
our sample. The average school in our sample has a minority share
of roughly 80% with a sizable standard deviation of roughly 23%.
In the third panel of this figure, we present a scatter plot of the
minimum and maximum observed values of sjt for each j, which
reflects the longitudinal variation in minority shares within schools.
Each point corresponds to a single school, and the distance of each
point from the 45-degree line represents the extent to which the
minority share of that school varies over time. The observed aggre-
gate longitudinal evidence implies that minority shares will tend
to increase in all schools in the absence of school specific shocks,
while the observed cross-sectional evidence hints at variation in
amenities across schools. The within-school variation in sjt facilitates
estimation of the parameters and especially the simulation of Sjt.

Finally, in the fourth panel of Fig. 3, we document the substantial
heterogeneity in the grades of instruction offered during our sample
period. Most, but not all, of this variation comes from heterogeneity
across schools. Although certain grade ranges are more commonly
observed (e.g., K–5, 6–8 and 9–12), there are still sizable numbers of
schools that offer instruction in other grade ranges during the sample
period. The longitudinal and cross-sectional variation in enrollments
combined with the heterogeneity in grade ranges of instruction all
contribute to our identification strategy.

5.2. Estimation results

In Table 1, we present OLS and IV estimates of parental preference
parameters for the racial composition of schools, bgr.22 In both
specifications, we include grade-race-year-ZIP code fixed effects at
the five digit ZIP code level.23 By doing so, we account for the empir-
ical fact that the set of students in LA County public schools is
changing over time, and we allow for parents to value neighborhood
amenities (including residential racial composition) at the ZIP code
level differently on average. As such, we identify bgr only off of vari-
ation in the minority shares of schools within the same ZIP code that
instruct at least one common grade. (This subsample amounts to over
98% of the sample and well over 99% of the aggregate public school
enrollment in LA County.) Standard errors are clustered by grade,
race, year and ZIP code to account for the potential serial correlation
of unobserved amenities within neighborhoods.

In the first specification of Table 1, we report naive OLS estimates
of bgr (we exclude Cgr

jt−1 from this specification). We find that
Whites possess relatively strong preferences against enrolling their
children in schools with higher minority shares

(
b̂gW < 0

)
, whereas

minorities possess moderate preferences for enrolling their children
in schools with higher minority shares

(
b̂gM > 0

)
. However, these

estimates may be biased if, for instance, parents tend to enjoy the
same school amenities as other parents of the same race.

In the second specification of Table 1, we implement our identifi-
cation strategy by using s

ḡj−1
jt−2 as an instrument for sjt−1 and including

Cgr
jt−1 as controls. Because of the large numbers of parameters, we also

present these estimates from our preferred specification in graphical
form in Fig. 4. We estimate a very strong first stage (the coefficient on
the instrument has a t-statistic of 95.5).24 We still find that Whites
respond negatively and minorities respond positively to high minor-
ity shares, but the responses are smaller in magnitude than the ones
obtained by OLS. White preferences for peers are strongest in kinder-
garten and again in high school. We speculate that the former reflects
the fact that parents anticipate that their kindergarten enrollment
choice may have longer reaching implications in the future (due, for
example, to moving costs), whereas the latter may reflect the fact
that White parents are more attentive with high school choice.25 On
the other hand, minority preferences for peers are strongest in the
middle school and late high school grades.26

5.3. Simulation results

We present graphical simulations of the expected minority share
in three selected LA County schools for 2009 in Fig. 5 to highlight
the direct connection between the Schelling model and our empir-
ical method. These simulations are empirical analogs to Fig. 2. Each
school exhibits qualitatively different tipping behavior; theory sug-
gests that these differences arise because of differences in the levels
of other amenities of the schools.

The simulated figure for Clifford D. Murray Elementary school
reveals a strong pull towards a heavily segregated minority stable

22 Underlying our estimation is the assumption that parental preferences for the
racial composition of schools do not change over the sample period. This assumption
is consistent with survey findings aggregated in Bobo et al. (2012).
23 Although the inclusion of these fixed effects barely changes the estimates, it main-

tains the equivalence between the estimation approach described in the main text and
the discrete choice estimation approach described in the appendix.
24 All 2SLS specifications in this paper have very strong first stages. They are omitted

for brevity and are available upon request.
25 Caetano (2016) finds that the marginal willingness to pay for school quality is

higher in elementary school and high school than in middle school among parents in
Minnesota, a predominantly White state.
26 The decrease in minority parental preferences in 9th and 10th grades is consistent

with heterogeneity in Black and Hispanic parents’ preferences for minority peers in
these grades. We document such heterogeneity in Section 7.
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Fig. 4. 2SLS estimates of bgr
jt . Note: Bars correspond to the estimates of bgr

jt from the second specification of Table 1.

Fig. 5. Tipping diagrams: Three schools. (a) Murray Elementary. (b) Jefferson Middle School. (c) San Antonio High. Note: Each panel shows the S curve in 2009 for a specific school
in the sample.

equilibrium. For any counterfactual minority share, the school will
rapidly converge to an entirely minority student body. This suggests
that the amenities offered by Murray Elementary are highly pre-
ferred by minority parents relative to White parents, so much so that
no tipping points exist. On the other hand, Jefferson Middle School
possesses an integrated tipping point near s = 0.60, and stable, seg-
regated equilibria for very low and very high values of s. This figure
recalls the canonical “S-curve” prescribed by the Schelling model that
lends itself to multiple equilibria. Finally, San Antonio High possesses
a single, heavily segregated, White stable equilibrium.

We summarize tipping behavior in the entire sample in Fig. 6. In
the first panel, we consider the existence of tipping points and stable
White and minority equilibria. Around 20% of schools possess tipping
points, 30% of schools possess stable White equilibria, and 85% of
schools possess stable minority equilibria. The prevalence of tipping
is mostly unchanged over time. This stands in contrast to the empir-
ical fact that the minority share of LA County students increased
over the sample period and suggests that the racial dynamics in our
sample should predominantly be understood as movements along
schools’ Sjt(s) curves.

In the second panel of Fig. 6, we present further heterogeneity in
tipping behavior with histograms of the locations of tipping points

and stable equilibria.27 Conditional on possessing a tipping point,
we find that the location of tipping points varies substantially from
roughly 20% minority to 80% minority. Similarly, the locations of
stable equilibria also vary, though they are concentrated at highly
segregated levels below 10% minority and above 90% minority.

We further explore this heterogeneity by summarizing tipping
behavior in elementary schools (K–5), middle schools (6–8) and
high schools (9–12) in Figs. 7–9 respectively. Tipping points are
rarely observed in elementary schools, though roughly 65% of middle
schools and 40% of high schools possess them. But even within school
types, we find substantial heterogeneity in the locations of tipping
points and stable equilibria. Although we do find heterogeneity in
the locations of tipping points and stable equilibria within schools
over time, it is much less pronounced than the heterogeneity in the
locations of tipping points and stable equilibria between schools.

We can use our simulation results to assess the extent to which
the schools in our sample are observed in equilibrium. In the first
panel of Fig. 10, we present the proportion of schools that are far-
ther than a given distance from the (relevant) stable equilibrium that

27 Stable equilibria are doubly counted for schools that possess two of them.



124 G. Caetano, V. Maheshri / Journal of Public Economics 148 (2017) 115–135

Fig. 6. Tipping behavior: All schools, 1995–2012. (a) Existence of tipping behavior over time. (b) Histograms of tipping behavior. Note: Panel (a) shows the share of schools that
possess a tipping point, a stable White (s < 0.5) equilibrium and a stable minority (s > 0.5) equilibrium in each year. Panel (b) overlays histograms of tipping points and stable
equilibria across all school-year combinations.

we would expect them to reach in the absence of exogenous shocks.
We find that 20% of schools are observed more than 20 percentage
points in minority share away from the relevant stable equilibrium,
and no schools are more than 80 percentage points away. Elementary
schools are more likely to be observed in equilibrium than middle
schools and high schools. Over the sample period though, enroll-
ments do tend to be observed closer to equilibrium, as depicted in the
second panel of Fig. 10. Starting in 2012, we calculate that after 30
years, the racial compositions of all schools in our sample will reach
within 2 percentage points of their stable equilibria in the absence of
shocks.

6. Interpretation

In this section we interpret our results in the theoretical context
of the Schelling model focusing on the roles of the model’s primitives
in explaining tipping behavior.

6.1. Tipping behavior under alternative policies

Often, policy makers are interested in the effect of an education
policy on school segregation. In order to understand this effect, it is
crucial to know the counterfactual level of segregation in the absence
of the policy, and because schools may not be in equilibrium, this
counterfactual level of segregation may even change over time in
the absence of shocks. Moreover, the endogenous reaction of parents
to the new racial compositions of schools (i.e., bgr

jt in our analysis)
may lead the short-run effect of a policy to be very different than its
long-run effect. Our analysis can be used to better understand these
effects. To illustrate this point, we present the short- and long-run
effects of two different policies in Fig. 11.

The first policy that we consider is one that affects the exoge-
nous amenities of a school (Xj from Eq. (1)). An example of such a
policy would be a change in resources for programs that are pre-
ferred differently by Whites and minorities (e.g., ESL programs). A

Fig. 7. Tipping behavior: Elementary schools (K–5), 1995–2012. (a) Existence of tipping behavior over time. (b) Histograms of tipping behavior. Note: Panel (a) shows the share
of K–5 schools that possess a tipping point, a stable White (s < 0.5) equilibrium and a stable minority (s > 0.5) equilibrium in each year. Panel (b) overlays histograms of tipping
points and stable equilibria across all K–5 school-year combinations.
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Fig. 8. Tipping behavior: Middle schools (6–8), 1995–2012. (a) Existence of tipping behavior over time. (b) Histograms of tipping behavior. Note: Panel (a) shows the share of 6–8
schools that possess a tipping point, a stable White (s < 0.5) equilibrium and a stable minority (s > 0.5) equilibrium in each year. Panel (b) overlays histograms of tipping points
and stable equilibria across all 6–8 school-year combinations.

Fig. 9. Tipping behavior: High schools (9–12), 1995–2012. (a) Existence of tipping behavior over time. (b) Histograms of tipping behavior. Note: Panel (a) shows the share of 9–12
schools that possess a tipping point, a stable White (s < 0.5) equilibrium and a stable minority (s > 0.5) equilibrium in each year. Panel (b) overlays histograms of tipping points
and stable equilibria across all 9–12 school-year combinations.

change in these amenities corresponds to a shift in the Sj( • ) curve of
a school, which we depict in Panel (a) as a shift to the dotted curve.
If the school’s minority share was originally at s = A, then this pol-
icy would have a short-run effect of SR (the difference between Sj(A)
from the new curve and the old curve). However, because the pol-
icy would change the location of the stable equilibrium, the policy
would have a long-run effect of LR < SR.

The second policy that we consider is one that directly affects
the endogenous amenity of a school, i.e., its racial composition. An
example of such a policy could be the busing of White or minor-
ity students to a school. Such a policy corresponds to a movement
along the Sj( • ) curve, which we depict in Panel (b). Suppose the
school’s minority share was originally at s = A. If minority students
were bused in until s = B, we would expect a short-run effect of

SRB = B − A. However, because the location of the stable equilib-
rium is unchanged, the endogenous responses of parents would undo
this entirely leading to a long run effect of LRB = 0. If instead White
students were bused in until s = C, we would expect a short-run
effect of SRC = A − C and a long-run effect of LRC as the school
would now be on a trajectory to a different stable equilibrium.28

With this framework, policymakers may be able to anticipate these
changes and design policies aimed at achieving a given specific level
of segregation in a more efficient way.

28 Note that if the policy was implemented in period t, then the “short-run” effect of
policy 1 would be observed in t + 1, whereas the “short-run” effect of policy 2 would
be observed in t.
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Fig. 10. Distance to stable equilibrium, 1995–2012. (a) Schools in 1995–2012. (b) Schools in 1995 vs. schools in 2012. (c) Largest year-on-year change in simulated minority share,
2012. Note: In Panel (a), for each value on the x-axis, we show the share of school-year combinations that are observed with a minority share that is out of equilibrium by more
than x. For instance, about 20% of all schools and 15% of all K–5 schools are located farther than 20 percentage points out of equilibrium from the stable equilibrium to which
they will eventually converge in the absence of external shocks. Panel (b) shows an inward shift of this curve from 1995 to 2012, reflecting the fact that on average, schools are
approaching a stable equilibrium over the sample period. In Panel (c), we simulate the changes in the minority share of each school 40 years into the future starting from 2012
and present the largest change in minority share of any of the schools in our sample.

6.2. Tipping behavior under alternative preferences

To illustrate the role of preferences for the minority share of
enrollment in explaining tipping behavior, we take Jefferson Middle
School in 2009, hold all levels of (and preferences for) other ameni-
ties fixed, and simulate tipping diagrams under various counterfac-
tual choices of bgr. These exercises can also be interpreted as placebo
tests for our empirical approach in order to show how the shapes
of the curves would differ with different levels of endogenous social
effects. Results are presented in Fig. 12.

In Panels (a) and (b), we illustrate that tipping behavior requires
parents of different groups to have different preferences for social
amenities. When White and minority parents value the racial com-
position of schools equally, schools do not feature tipping behavior.
Instead, they immediately adjust to a single stable equilibrium
regardless of the past racial composition.

In Panel (c), we consider tipping behavior under a counterfactual
in which White parents have a preference for minority peers, and

minority parents have a preference for White peers. The school now
possesses a single stable equilibrium to which the racial composition
will converge by oscillating. For instance, if the school began mostly
White, then in the following period, it would experience relative out-
flows of White students and inflows of minority students. Because
this new racial composition is relatively appealing to White parents,
then in the period following that, the school would experience rel-
ative inflows of White students and outflows of minority students,
and so on. At each period, the enrollment will move closer to the
stable equilibrium. In Panel (d), we consider a similar counterfac-
tual, except we assume that White parental preferences for minority
peers and minority parental preferences for White peers are much
stronger than in (c). In this case the school possesses a single unstable
equilibrium around which the minority share oscillates and diverges.

In the final two panels, we consider tipping behavior under coun-
terfactual preferences that are qualitatively similar to those that we
estimated. In Panel (e), White and minority parental preferences for
peers of the same race are modest. Depending on the levels of other
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Fig. 11. Short- and long-run effects of policies. Policy 1: Changing exogenous ameni-
ties. Policy 2: Changing endogenous amenity.

amenities in the school and parental preferences for them, this could
potentially generate tipping behavior. However, in Jefferson Middle
School, these preferences would not have been sufficiently strong to
generate tipping behavior in 2009. If, however, they were stronger,
then this school would indeed feature a tipping point and two stable,
segregated equilibria as in Panel (f).

6.3. Tipping behavior and other amenities

Increases in the levels of other amenities that, say, White par-
ents enjoy relative to minority parents make schools relatively more
attractive to White parents on average. This in turn causes the
expected future minority share of enrollment at those schools to
decrease and shifts the simulated Sjt curve down. The locations of
tipping points and stable equilibria are affected in a predictable way.
In general, a change in another amenity will shift Sjt even if White

and minority parents have similar (though not identical) preferences
for it. Hence, heterogeneity in the levels of other amenities across
schools (and within schools over time), coupled with heterogeneity
in preferences for those amenities implies heterogeneity in tipping
behavior.29

In order to explore how tipping behavior is associated with dif-
fering levels of school amenities, we correlate Sjt(s) at various values
of s to three selected school amenities that are observed in the Cal-
ifornia Basic Educational Data System (CBEDS).30 For this analysis
only, we restrict the sample period from 1999 to 2012 because data
on the other school amenities are not available in earlier years. We
measure the academic quality of the student body using the Aca-
demic Performance Index (API)31 and the socioeconomic status of
the student body using the share of students who are eligible for a
free or reduced-price lunch under the National School Lunch Pro-
gram (NSLP);32 we also consider the proportion of students with at
least one parent with some college education. These three ameni-
ties proxy for characteristics of the student body that may relate to
tipping behavior.

In Fig. 13, we present scatter plots of S(0.50) against the lev-
els of these three amenities. Each point corresponds to a single
school-year observation. The relationship between S(0.50) and these
amenities reflects the direction of a shift in the S-curve in response
to a change in those amenities. Schools with higher tests scores
are associated with S-curves that are shifted towards the right. This
suggests that White parents value school quality relatively more
than minority parents. We find similar correlations with the share
of students whose parents have some college education, and the
opposite correlation with the share of students who are eligible
for free or reduced price lunches. This suggests that White parents
have a relatively stronger distaste for peers with less education and
lower income than do minority parents. We summarize these cor-
relations in Table 2, where we also report results for S(0.25) and
S(0.75). All estimated correlations are highly statistically significant.
We remark that these estimates should not be interpreted as causal;
nevertheless, they are consistent with the theoretical discussion in
Section 2.

7. Extension: Multiplicity of groups and social amenities

Thus far we have assumed that there are only two groups of stu-
dents and that there is a single social amenity in parental demand
functions. In reality, LA County contains sizable White, Black and His-
panic populations, so lumping Black and Hispanic students together
may obscure interesting heterogeneity in preferences for peers and

29 This provides a tool for policymakers to influence current and future levels of
school segregation by manipulating the locations of stable equilibria and tipping
points. With causal estimates of parental preferences for other amenities and the sim-
ulated curve Sjt , policymakers can actively adjust these amenities in school j to affect
tipping behavior. By shifting the tipping point, policymakers can reverse the direction
of tipping behavior in the short-run. They can also shift the relevant stable equilibrium
to a more appealing location, affecting the long-run level of segregation. The identifi-
cation of parental preferences for other amenities is beyond of the scope of this paper.
Nevertheless, the estimation of preferences for these amenities is the objective of a
large literature in public and urban economics (e.g., Chay and Greenstone, 2005) that
complements our empirical framework.
30 We choose to correlate amenities to levels of the Sjt curves instead of tipping

points and stable equilibria because not all schools possess tipping points; hence
sample selection would otherwise confound our interpretation.
31 The base API is an accountability measure devised by the California State Board

of Education that is specifically designed to compare overall performance across
different schools and within schools over time.
32 A student qualifies for a free lunch if their family’s income is below 130% of the

federal poverty threshold or a reduced-price lunch if their family’s income ranges from
130% to 185% of the federal poverty threshold; as such, this variable is a natural proxy
for the average income level of a school’s student body.
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Tipping figures for Jefferson Middle School under alternate estimates of bgr , 2009. Note: Each panel shows the S curve under counterfactual values of bgW and bgM . In
each counterfactual, bgr is assumed to be the same for all grades. These panels can be compared to Panel (b) of Fig. 5, which reflects the S curve of the same school under the true
estimates of bgW and bgM .

Fig. 13. Correlations of S(0.50) and other amenities, 1995–2013. (a) Normalized Academic Performance Index. (b) Share of parents with some college. (c) Share of students eligible
for free/reduced lunch. Note: In each plot, S(0.50) (the resulting value of the S(s) curve for s = 0.50) is on the y-axis and the level of the amenity is on the x-axis.

in tipping behavior.33 In order to explore this possibility, we can
modify demand Eq. (3) as

log ngr
jt = b

gr
B sB

jt−1 + b
gr
H sH

jt−1 + a
gr
zt + f

(
n

−ḡjW
jt−1 , n

−ḡjB
jt−1 , n

−ḡjH
jt−1

)
+ 4

gr
jt (8)

for r ∈ {W, B, H} and estimate three distinct demand functions.
Specifying multiple social amenities, sB

jt−1 and sH
jt−1, deepens the

analysis in two directions. First, it allows us to implicitly test which
social amenity is chiefly responsible for tipping behavior. For example,

33 In this section only we group Asian, Pacific Islander, American Indian and Alaskan
Native parents with White parents, although the results are robust when we exclude
these parents from the analysis. While it is computationally feasible to identify tipping
behavior among more than three racial groups using our method, we do not present
such results as they are difficult to show graphically.

if the preference parameters for peers of one race are statistically
indistinguishable from each other across groups, while the preference
parameters for peers of another race are estimated to be distinct
across groups, then tipping behavior (if it exists) will be due to the
students of the latter race. Second, if multiple social amenities are
potentially responsible for tipping behavior, then even a log-linear
specification of demand may generate exotic tipping behavior.

To illuminate this second point, note that in this modified model,
tipping is now a higher dimensional phenomenon. There are two
implied enrollments that we must simulate, SB

jt and SH
jt , each of which

is a function of both sB and sH. As a result, SB
jt and SH

jt are two-
dimensional surfaces, and tipping points and equilibria in school
j are the intersections of these two surfaces with the “45-degree”
hyperplane defined by the system of equations

SB
jt

(
sB, sH

)
= sB (9)
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Table 2
Correlates of S-curves, 1999–2012.

Variable Academic
Performance
Index

Share of students having
a parent with some
college education

Share of students eligible
for a free or reduced
price lunch

S(0.25) −0.101∗∗ −0.684∗∗ 0.628∗∗

(0.004) (0.014) (0.011)
S(0.50) −0.081∗∗ −0.514∗∗ 0.461∗∗

(0.003) (0.009) (0.008)
S(0.75) −0.051∗∗ −0.281∗∗ 0.243∗∗

(0.002) (0.007) (0.007)

Notes: This table presents the correlation of specific points of the Sj curve with
selected school amenities included in Xj . Pairwise correlations are presented along
with standard errors clustered at the school level.

∗∗ Statistically significant at the 99% level.

SH
jt

(
sB, sH

)
= sH (10)

in the four dimensional (SB, SH, sB, sH) space.
We estimate the parental demand system for schooling given in Eq.

(8). Instruments are constructed as before. Regression results for the
preferred specification are presented in Table 3 for all specifications.34

White parents have a distaste for both Black and Hispanic peers with
a slightly stronger distaste for Black peers. Black parents show a
moderate preference for Black peers but no preference for Hispanic
peers except in 9th and 10th grades. On the other hand, Hispanic
parents tend to show a slight preference for Hispanic peers and little
if any distaste for Black peers. While these results are consistent with
our baseline findings that White parents show a moderate distaste
for minority peers and minority parents show a slight preference for
minority peers, they reveal more complex racial preferences that we
believe lend further realism to our estimation results.35

The heterogeneity in preferences across groups and social ameni-
ties manifests itself in richer tipping behavior. To provide a flavor of
this, we present a pair of three dimensional representations of the
functions SB

jt and SH
jt for Adams Middle School in 2009 in Fig. 14. Points

where the tipping surface crosses the diagonal plane from below rep-
resent tipping points in either sB or sH, and points where the tipping
surface crosses the diagonal plane from above represent “partially”
stable equilibria in sB or sH (since they may not also be stable equilib-
ria in the other social amenity). Points at which both tipping surfaces
are crossed from below represent true stable equilibria.

It is difficult to glean tipping behavior from a pair of three-
dimensional plots. However, we can combine both of these results
in a single, digestible quiver plot that describes how the dynamic
system of school enrollment changes over time. To illustrate, we
present such quiver plots for the same three schools represented in
Fig. 15. For any point in the triangular domain, we can simulate how
the racial composition of a given school will evolve over the next
period. This evolution is captured in an arrow, where longer arrows
represent larger shifts in composition.

In the first panel, Murray Elementary possesses two stable equi-
libria. From most starting points, Murray Elementary will eventually
reach a fully Hispanic student body. However, if Murray Elemen-
tary begins with a fully Black student body, the composition will
not change. These two stable equilibria are both consistent with the
single minority stable equilibrium that we found in the baseline sim-
ulation and presented in Fig. 5, so this constitutes a refinement of our
earlier results.

34 We subjected our specification with multiple social amenities to the same
robustness checks as our preferred baseline specification and found similar results.
35 Our estimates of White and Black parental preferences are consistent with survey

evidence from Los Angeles that indicates “Black respondents are the least likely to
object to residential integration” while “White respondents are the most likely to
object to interracial residential contact” (Bobo and Zubrinsky, 1996).

Table 3
Parental demand for schooling, 1995–2012: Two social amenities.

Coeff. on sB
jt−1 Coeff. on sH

jt−1

r: W B H W B H

bKr −4.43∗∗ 4.40∗∗ −0.21 −4.45∗∗ 0.43 1.86∗∗

(0.56) (0.42) (0.25) (0.28) (0.39) (0.18)
b1r −3.13∗∗ 1.59∗∗ −0.59∗∗ −2.37∗∗ −0.19 1.17∗∗

(0.49) (0.36) (0.22) (0.25) (0.32) (0.15)
b2r −3.20∗∗ 1.84∗∗ −0.41 −2.04∗∗ −0.17 0.99∗∗

(0.48) (0.32) (0.22) (0.24) (0.30) (0.16)
b3r −2.73∗∗ 1.64∗∗ −0.58* −2.53∗∗ −0.56 0.96∗∗

(0.48) (0.32) (0.25) (0.24) (0.31) (0.16)
b4r −3.00∗∗ 1.89∗∗ −0.79∗∗ −2.22∗∗ 0.16 0.93∗∗

(0.49) (0.34) (0.28) (0.25) (0.30) (0.16)
b5r −2.90∗∗ 1.48∗∗ −1.15∗∗ −2.15∗∗ −0.05 1.43∗∗

(0.48) (0.35) (0.29) (0.24) (0.29) (0.16)
b6r −6.67∗∗ 3.28∗∗ −1.43∗∗ −2.74∗∗ 0.32 2.53∗∗

(0.98) (0.87) (0.75) (0.49) (0.56) (0.38)
b7r −6.78∗∗ 2.54∗∗ −1.50 −2.56∗∗ 0.63 3.39∗∗

(1.39) (1.09) (1.11) (0.79) (0.78) (0.80)
b8r −5.33∗∗ 3.16∗∗ 0.51 −2.28∗∗ 0.90 5.10∗∗

(1.30) (1.15) (1.05) (0.83) (0.83) (0.67)
b9r −3.35* 1.88 −2.91* −4.46∗∗ −4.88∗∗ −0.02

(1.69) (1.80) (1.22) (1.05) (1.20) (0.74)
b10r −5.25∗∗ 1.53 −1.22 −4.31∗∗ −2.66∗∗ 0.60

(1.68) (1.54) (1.07) (0.89) (1.05) (0.74)
b11r −6.54∗∗ 2.99* −1.00 −3.77∗∗ −0.08 2.98∗∗

(1.51) (1.51) (0.97) (0.79) (0.96) (0.56)
b12r −6.43∗∗ −0.38 −3.54∗∗ −4.31∗∗ −0.35 1.90∗∗

(1.56) (1.67) (1.20) (0.85) (0.99) (0.64)
R2 0.43
Num. Obs. 542,799

Notes: The dependent variable is log enrollment by grade, race, school and
year

(
log ngr

jt

)
. Regression includes grade-race-year-ZIP code fixed effects and

log n
gjW

jt−1, . . . , log n
ḡj−1W
jt−1 , log n

gjB

jt−1, . . . , log n
ḡj−1B
jt−1 and log n

gjH

jt−1, . . . , log n
ḡj−1H
jt−1 as controls.

s
Bḡj−1
t−2 and s

Hḡj−1
t−2 are used as instrumental variables. Robust standard errors clustered

by grade, race, year and ZIP code are provided in parentheses.
∗ Statistically significant at the 95% level.

∗∗ Statistically significant at the 99% level.

In the second panel, Jefferson Middle School possesses an unsta-
ble equilibrium at roughly 60% Black and 2% Hispanic enrollments.
This is consistent with the tipping point we found in the baseline
simulation. We find stable minority equilibria at 20% Black/75% His-
panic enrollments and at 90% Black/5% Hispanic enrollments. We
also find a single stable White equilibrium at 5% Black enrollment.
All three of these stable equilibria are consistent with the two stable
equilibria that we found in the baseline simulation.

In the third panel, San Antonio High School possess a stable equi-
librium in which all students are White, which is consistent with
what we found in the baseline simulation. However, it also possesses
a stable all-Black equilibrium along with an unstable equilibrium at
50% White and 50% Hispanic enrollments. The latter two equilib-
ria reflect more complex dynamics that cannot be uncovered in our
baseline specification.

In general, the higher-dimensional analogs of tipping points and
stable equilibria points are one dimensional manifolds, i.e. equilib-
ria may exist along curves, so we cannot describe the distributions of
tipping points and stable equilibria with unidimensional histograms.
Furthermore, the computational complexity associated with identi-
fying the full set of stable and unstable equilibria for all schools even
with just two social amenities is quite considerable. For this rea-
son, we can only present higher dimensional tipping diagrams for
selected school-year combinations in our sample as a showcase of
the generality of our empirical approach. Extending this analysis for
the entire sample in order to summarize higher dimensional tipping
behavior lies beyond the scope of this paper.
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Fig. 14. Jefferson Middle School, two social amenities. Note: These panels are the higher dimensional analogs of Panel (b) of Fig. 5, which present the S“ curve” of Jefferson Middle
School under the assumption that Black and Hispanic students are indistinguishable.

Fig. 15. Quiver plots: Two social amenities. (a) Murray Elementary. (b) Jefferson Middle School. (c) San Antonio High. Notes: All results from 2009. For all points in the domain,
we simulate how the racial composition of this school will evolve to next year. Longer arrows represent larger shifts in the racial composition. These panels can be compared to
the panels of Fig. 5, which make the restrictive assumption that Black and Hispanic students are indistinguishable.

8. Conclusion

The Schelling model of segregation explains seemingly complex
dynamics in a simple framework. In this paper, we provide an empir-
ical implementation of this model with novel features. Our approach
to identify tipping points and stable equilibria allows for heterogene-
ity in their existence and their location and can be adapted to analyze
tipping behavior in more complex settings. In addition, we introduce
an IV approach to identify preferences for peer groups in educational
settings with two valuable features. First, it requires relatively sparse
data and can be implemented with just a panel of grade level school
enrollments. Second, the logic of our approach can be leveraged to
directly test our identifying assumptions with falsification and over-
identification tests. This IV approach can be of use in a growing
number of studies of peer effects in educational settings.

We implement our approach in the case of racial segregation in
public schools and find that the market for public schooling in Los
Angeles County from 1995 to 2012 was both diverse and dynamic. Par-
ents have strong preferences for peers of the same race, particularly

in later grades. Thus, we tend to find tipping behavior in middle and
high schools but not in elementary schools. We document substantial
heterogeneity in the tipping behavior across schools that is correlated
with the school’s quality and the school’s socioeconomic composi-
tion. We also find that many schools are observed far from a stable
equilibrium, although they seem to be in the process of convergence
to it. Finally, the structure of our empirical approach allows us to ana-
lyze tipping in a higher-dimensional context that captures realistic
heterogeneity in the preferences of Black and Hispanic parents.

Our paper highlights the need for a more conservative view of
the state of the art in the subject of tipping behavior and segrega-
tion, as better data are needed to undertake a more complete analysis
on the topic. With improved data, it would be useful to explore fur-
ther substitution effects between schools along the lines of Berry
et al. (1995) and Bayer and McMillan (2010) and to allow for the
separate identification of moving costs and preferences as in Bayer
et al. (2016). In addition, the availability of price data would allow
us to explore the complex interactions that have been documented
between peer groups and prices (Kiel and Zabel, 1996). We believe
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that the approach developed here serves as a platform upon which
these features can be added.36

Appendix A. Discrete choice demand estimation

In this section we provide micro-foundations to our demand
estimation in line with the literature on school and neighborhood
discrete choice models (e.g., Bayer and Timmins, 2005; Bayer et al.,
2007; Caetano, 2016).

A.1. Basic setup

In each year t, parents make a choice of whether to enroll their
child in one of J available public schools in Los Angeles County or
instead to select the outside option of enrolling their child in a pri-
vate school or living outside of LA County altogether. We assume
that school supply is perfectly elastic.37 In addition, for simplicity in
this appendix we assume that there are no moving costs associated
with parent i′s enrollment decision, so it suffices to consider the flow
utility of making each choice.38

Parents make their enrollment decisions in period t having
observed the set of school amenities at the end of period t − 1. This
may include the amenities of the neighborhood where parents would
need to live in order to enroll their child in a particular school. We
specify the indirect utility of parent i whose child of race r is enrolled
in grade g at school j in year t as

Ugr
ijt = bgrsjt−1 + n

gr
jt + g

gr
ijt (A.1)

where all variables and parameters are as described in the main text.
n

gr
jt represents an unobservable that varies at the grade-race-school-

year level, and the error term g
gr
ijt is an individual specific unobserved

component of utility that is assumed to be i.i.d. extreme value 1.39

Each individual chooses among J+1 options, where j = 0 indexes the
outside option (interpreted as the choice to send the child to a pri-
vate school or a public school outside of LA County), and j = 1, . . . , J
indexes each public school in LA County.

Parent i chooses school j in year t if

Ugr
ijt > Ugr

ikt , (A.2)

for all alternatives k �= j including the outside option.

A.2. First stage: Estimation

We first collect the non-individual specific determinants of utility
into d

gr
jt ≡ d

gr
jt

(
sjt−1

)
= bgrsjt−1 + n

gr
jt . We normalize d

gr
0t = 0 for each

g, r and t. It follows from Eq. (A.2) that parent i will enroll their child
in school j at t if g

gr
ikt − g

gr
ijt < d

gr
jt − d

gr
kt for all k �= j including the

36 We discuss some of these challenges in the supplementary appendix.
37 By modeling the supply side as commonly done in discrete choice demand estima-

tion, one could relax this assumption (see the supplementary appendix for a detailed
description of this point).
38 We do not make this assumption in the paper, since bgr reflects both preferences

and moving costs. With detailed data related to the transition of students between
schools, one could relax this assumption and estimate a dynamic discrete choice
model (Bayer et al., 2016; Caetano, 2016) and separately identify preferences and
moving costs.
39 The distribution of ggr

ijt can be generalized following Berry et al. (1995) to account
for other types of heterogeneity in preferences. However, we believe that may not be
a good idea in our context even with better data (see the supplementary appendix for
a detailed discussion of this topic).

outside option. We denote this probability of enrollment as Pgr
ijt . The

assumption on the distribution of g implies that Pgr
ijt is constant within

grade, race, school and year, so we can drop the subscript i and write
this probability as

Pgr
jt

(
sjt−1

)
=

exp
(
d

gr
jt

(
sjt−1

))

1 +
J∑

k=1
exp

(
d

gr
kt (skt−1)

) , j = 1, . . . , J (A.3)

which is the familiar logit relationship. Following Berry (1994), we
can estimate each d

gr
jt as

d̂
gr
jt = log

ngr
jt

ngr
0t

(A.4)

directly from the data. d̂gr
jt can be interpreted as the estimated mean

utility that race r parents enjoy from enrolling their children in grade
g in school j in year t. We can then write

log ngr
jt = bgrsjt−1 + n

gr
jt + log ngr

0t + l
gr
jt︸ ︷︷ ︸

unobserved

, j = 1, . . . , J (A.5)

where l
gr
jt = d̂

gr
jt − d

gr
jt is the error due to estimation of d. We can

re-write Eq. (A.5) as

log ngr
jt = bgrsjt−1 + a

gr
zt + 4

gr
jt , j = 1, . . . , J (A.6)

where a
gr
zt is a grade-race-neighborhood-year fixed effect that allows

for schools in the same neighborhood to have a different level of
substitutability than schools in different neighborhoods (e.g., because
of the availability of private schools in the neighborhood), and the
composite error term 4

gr
jt = n

gr
jt + log ngr

0t + l
gr
jt − a

gr
zt . Note that a

gr
zt

absorbs log ngr
0t , which crucially eliminates the need to observe ngr

0t
(which we do not observe). It follows that 4gr

jt contains only grade-race-
school-year specific components, which we argue to be orthogonal
to the proposed instrument described in the main text. Thus, the
demand estimation procedure outlined in the main text is equivalent
to a standard, well defined school decision problem that embeds a
neighborhood choice model, and the proposed instrument can be
used to identify bgr.

A.3. Second stage: Simulation

It is also the case that the simulation procedure in this dis-
crete choice framework is equivalent to the simulation procedure
described in the main text. Without loss of generality, consider the
following decomposition

Pgr
ijt = p

gr
ijt

• Pgr
it , j = 1, . . . , J (A.7)

where Pgr
it is the probability that parent i will not choose the outside

option, and p
gr
ijt is the probability of that parent choosing school j con-

ditional on not choosing the outside option. Given our assumptions,
we can drop the index i for simplicity and denote this conditional
probability p

gr
jt . Eqs. (A.3) and (A.7) then imply

p
gr
jt

(
sjt−1

)
=

exp
(
d

gr
jt

(
sjt−1

))

J∑
k=1

exp
(
d

gr
kt (skt−1)

) , j = 1, . . . , J. (A.8)
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For each counterfactual value s, the implied share of minority
students in school j at time t, Sjt(s), can then be written as

Sjt(s) =

∑
g

NgM
t p

gM
jt (s)

∑
g

NgM
t p

gM
jt (s) + NgW

t p
gW
jt (s)

, j = 1, . . . , J, (A.9)

where Ngr
t =

∑J
k=1 ngr

kt , under the assumption that log ngr
0t(s) =

log ngr
0t , so that Pgr

it (s) = Pgr
it .40 Substituting Eq. (A.4) into Eq. (A.8)

yields

p
gr
jt (s) =

exp
(

log ngr
jt (s) − log ngr

0t

)

J∑
k=1

exp
(

log ngr
kt (s) − log ngr

0t

)

=
ngr

jt (s)
∑J

k=1 ngr
kt (s)

, j = 1, . . . , J. (A.10)

Finally, by substituting Eq. (A.10) into Eq. (A.9), we arrive at Eq.
(7) in the main text. By holding a

gr
zt fixed in the simulation, we explic-

itly hold the attractiveness of each neighborhood fixed. Although our
simulation procedure fixes the number of students planning to enroll
in LA County public schools, it does not constrain parental substitu-
tion across neighborhoods. This provides a stationary environment
suitable for the identification of fixed points.

Appendix B. Robustness

B.1. Estimation

In Table B.4, we present the results for several robustness checks
of our preferred specification (2) from Table 1. The first two spec-
ifications assess the ability of our instrumental variables to isolate
the endogenous social effect of interest. The following two spec-
ifications explore the extent to which our estimates should be
interpreted as preferences for the racial composition of schools
versus preferences for the racial composition of both schools and
neighborhoods.

In specification (1), we explore the logic of our identification
strategy more deeply by formally testing the validity of s

ḡj
t−1. Recall

that s
ḡj
t−1 may not be a valid IV because we cannot include grade

ḡj enrollments as controls in Cgr
jt−1 (hence permanent grade ḡj spe-

cific amenities could violate our identifying assumption). We test
whether this is the case by re-estimating parental demands using
both s

ḡj
t−1 and s

ḡj−1
t−2 as instrumental variables for sjt−1. The Hansen

(1982) J-statistic from an over-identification test of the validity of
these instruments has a p-value of 0.0001, which allows us to reject
the exclusion restriction at a very high level of confidence. In spec-
ification (2), we conduct a similar exercise to test the validity of
our preferred instrument s

ḡj−1
jt−2 , this time by re-estimating parental

demands using s
ḡj−1
jt−2 and s

ḡj−2
jt−3 as instrumental variables for sjt−1.

Because we include grade ḡj −1 and ḡj −2 enrollments in t−1 as con-
trols, permanent amenities specific to those grades will be plausibly
absorbed. Indeed, our parameter estimates are statistically indistin-
guishable from those in our preferred specification, and the J-statistic

40 This assumption holds if parental substitution patterns into the outside option do
not vary within neighborhood. In any case, the counterfactual minority share of enroll-
ment in a particular school is not likely to affect the overall county level substitution
into the outside option as a practical matter since the number of schools in LA County
is large.

from an over-identification test of these instruments has a p-value
of 0.58, which does not allow us to reject the exclusion restriction
even at a very low confidence level.41 Taken all together, we inter-
pret specifications (1) and (2) as strong evidence in favor of the logic
of our identification strategy and our exclusion restriction42.

School choice and neighborhood choice are related decisions, so
it is important to consider whether our estimates capture prefer-
ences for the racial composition of schools as opposed to residual
preferences for the racial composition of neighborhoods. In order
to explore this distinction, we re-estimate our preferred specifica-
tion and include fixed effects at the grade-race-year-Census tract
level. Given the smaller geographic size of Census tracts in com-
parison to ZIP codes, this allows us to improve our identification
strategy by effectively comparing schools offering instruction in
at least one common grade that are located much closer to each
other. We present the results in specification (3) and obtain coeffi-
cient estimates that are similar to those estimated in our preferred
specification.

Differences between these coefficient estimates and our pre-
ferred ones, however small, could arise for two reasons. First, the
coefficient estimates in our preferred specification may include
parental preferences for neighborhoods. Second, the inclusion of
grade-race-year-Census tract fixed effects reduces the size of the
sample available for estimation by roughly 80% down to 87,840
observations. Hence the small difference in coefficient estimates
could simply be due to the fact that the subsample of schools that
share a grade with another school in the same Census tract is not
representative of all LA County schools, as they are likely located in
higher density neighborhoods.

We attempt to disentangle these two reasons by re-estimating
our preferred specification on the subsample of 87,840 observations,
and we present the results in specification (4). These coefficient
estimates are statistically indistinguishable from those in specifica-
tion (3); hence we cannot reject the second explanation. We interpret
this as suggestive evidence that the coefficient estimates in our
preferred specification predominantly capture parental preferences
for the racial composition of schools per se. This is unsurprising, since
Cgr

jt−1 likely captures many unobserved neighborhood amenities, so
only neighborhood attributes that are specific to grade ḡj would not
be controlled for. However, a full distinction between school and
neighborhood tipping is beyond the scope of this paper, as it would
require student and non-student data at the school attendance area
level, which is frequently smaller than a Census Tract.

In Table B.5, we present the results from a variety of additional
robustness checks. In the description of our sample, we drew atten-
tion to the fact that there is substantial variation in the range of
grades offered in LA County schools that is both cross-sectional and
longitudinal in nature. In the first two specifications, we show that
our results do not crucially rely on either of these sources of vari-
ation. First, we absorb the cross-sectional variation in the range of

41 There is a reasonable concern of whether over-identification tests are powerful
enough to detect invalid IVs, as we might fail to reject the null when the IVs are invalid
in similar ways. We offer two pieces of evidence to suggest that in our context we have
a powerful test. First, we also implement all other combinations of over-identification
tests with the available candidate IVs

(
e.g., s

ḡj
jt−1 and s

ḡj−2
jt−3

)
, and the test consis-

tently rejects the null hypothesis when (and only when) s
ḡj
jt−1 is included as IV. Second,

when we restrict our sample to K–12 schools only, we can likely perform a more pow-
erful test because we can maximize the distance between the IVs in the test. When we
include sK

jt−13 and s12
jt−1 as IVs, we reject the test. In contrast, we fail to reject the test

when we include sK
jt−13 and s11

jt−2 as IVs.
42 We find two additional empirical results in favor of the claim that Cgr

jt−1 fully
absorbs the confounding component of the IV. First, we find similar results when we
control for the enrollments of each race for all grades except the highest grade more
flexibly (i.e., not only as a linear combination of log-demand for each grade and race).
Second, we find similar results when we also add as controls the enrollments of the
control cohorts observed at earlier years

(
Cgr

jt−2

)
.
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Table B.4
Parental demand for schooling, 1995–2012: Robustness 1.

(1) (2) (3) (4)

r: W M W M W M W M

bKr −4.42∗∗ 1.71∗∗ −4.06∗∗ 1.49∗∗ −4.22∗∗ 1.98∗∗ −4.57∗∗ 2.49∗∗

(0.25) (0.14) (0.26) (0.14) (0.87) (0.49) (0.62) (0.41)
b1r −2.60∗∗ 1.16∗∗ −2.36∗∗ 1.11∗∗ −1.29 1.05* −1.90∗∗ 1.33∗∗

(0.23) (0.13) (0.24) (0.13) (0.69) (0.49) (0.49) (0.36)
b2r −2.16∗∗ 0.83∗∗ −2.20∗∗ 0.78∗∗ −1.98∗∗ 1.15* −1.84∗∗ 1.39∗∗

(0.21) (0.13) (0.23) (0.13) (0.75) (0.49) (0.52) (0.37)
b3r −2.57∗∗ 0.87∗∗ −2.55∗∗ 0.92∗∗ −2.17∗∗ 0.44 −2.55∗∗ 1.36∗∗

(0.22) (0.14) (0.23) (0.15) (0.68) (0.48) (0.53) (0.37)
b4r −2.47∗∗ 0.91∗∗ −2.61∗∗ 0.83∗∗ −1.54* 0.88 −1.99∗∗ 1.26∗∗

(0.22) (0.12) (0.24) (0.13) (0.76) (0.47) (0.54) (0.34)
b5r −2.34∗∗ 1.29∗∗ −2.62∗∗ 1.20∗∗ −1.20 2.20∗∗ −1.41 2.24∗∗

(0.22) (0.14) (0.23) (0.14) (0.75) (0.52) (0.54) (0.41)
b6r −2.17∗∗ 3.10∗∗ −1.70∗∗ 2.17∗∗ −3.80∗∗ 1.95 −2.96∗∗ 2.66∗∗

(0.44) (0.32) (0.54) (0.43) (1.23) (1.15) (0.90) (0.65)
b7r −4.68∗∗ 3.02∗∗ −5.72∗∗ 2.29* −4.58 5.82* −6.16∗∗ 4.41*

(0.94) (0.57) (1.45) (1.04) (3.05) (2.51) (2.36) (1.97)
b8r −4.34∗∗ 4.33∗∗ −4.16∗∗ 5.13∗∗ −6.48* 5.52∗∗ −6.75∗∗ 4.41∗∗

(0.83) (0.53) (1.48) (1.16) (3.13) (1.73) (2.59) (1.32)
b9r −4.68∗∗ −0.67 −5.98∗∗ −0.57 −11.6∗∗ −1.37 −9.38∗∗ −1.21

(0.94) (0.58) (1.11) (0.70) (2.44) (1.43) (1.89) (1.04)
b10r −4.34∗∗ 0.08 −3.38∗∗ 0.87 −8.06∗∗ 0.84 −6.65∗∗ 0.42

(0.83) (0.52) (0.87) (0.52) (1.80) (1.36) (1.44) (1.02)
b11r −3.06∗∗ 1.59∗∗ −4.07∗∗ 1.71∗∗ −4.56∗∗ 3.52∗∗ −5.57∗∗ 2.47∗∗

(0.72) (0.44) (0.85) (0.55) (1.48) (0.98) (1.35) (0.80)
b12r −4.20∗∗ 1.40∗∗ −5.65∗∗ 1.25* −7.05∗∗ 2.14* −8.30∗∗ 1.37

(0.75) (0.47) (0.87) (0.61) (1.88) (1.09) (1.50) (0.88)
Controls? Yes Yes Yes Yes

IVs? s
ḡj
t−1, s

ḡj−1
t−2 s

ḡj−1
t−2 , s

ḡj−2
t−3 s

ḡj−1
t−2 s

ḡj−1
t−2

Gr.-race-year-ZIP code FEs? Yes Yes No Yes
Gr.-race-year-census tract FEs? No No Yes No
J-statistic 61.66∗∗ 24.00 – –
(p-Value) (0.00) (0.58)
R2 0.43 0.42 0.46 0.45
Num. obs. 361,866 314,400 87,840 87,840

Notes: The dependent variable is log enrollment by grade, race, school and year
(

log ngr
jt

)
. All specifications are estimated by 2SLS and include log n

gjW

jt−1, . . . , log n
ḡj−1W
jt−1 and

log n
gjM

jt−1, . . . , log n
ḡj−1M
jt−1 as controls. J-statistics in (1) and (2) are reported from Hansen’s over-identification test. Coefficients in (4) are estimated on a restricted subsample that is

identical to (3). Robust standard errors clustered by grade, race, year and ZIP code are provided in parentheses.
∗ Statistically significant at the 95% level.

∗∗ Statistically significant at the 99% level.

grades by re-estimating our preferred specification with fixed effects
at the grade-race-year-ZIP code-grade range level and present the
results in specification (1).43 Second, we eliminate the longitudi-
nal variation in the range of grades by re-estimating our preferred
specification on a restricted subsample of school-years that have
no change in the grades offered from t − 1 to t. In both specifi-
cations we obtain coefficient estimates that are broadly similar to
those of our preferred specification. Moreover, the standard errors
are only slightly larger than in our preferred specification. These
results suggest that the observed variation in the range of grades
offered, although useful, does not drive our results.

43 One potential concern is that students of the IV cohort may have younger siblings
who enter the school in t, thereby confounding our estimates. (If these siblings enter
the school before t, their enrollment is absorbed by our controls.) Grade-race-year-
ZIP code-grade range fixed effects absorb any reminding confounding effect related to
them. To see this, suppose we compare estimates of, say, bKr from regressions on two
different subsamples: one that includes only K–5 schools and the other that includes
only K–12 schools. Because the IV cohorts in these two subsamples are separated by 7
years of age, the students of the IV cohort in K–5 schools are 6 years older than their
siblings entering kindergarten, while the students of the IV cohort in K–12 schools
are 13 years older than their siblings entering kindergarten. The magnitude of this
potentially confounding effect should vary with the relative frequency of families with
each amount of birth spacing, so any ensuing bias should vary with the grade range of
the schools in our sample.

We also note that some schools offer instruction to only a very
small number of students in a particular grade; such schools may
not be comparable across other unobserved dimensions to other
schools that offer instruction to many students in these grades. In
addition, such low enrollment numbers could be subject to measure-
ment error. As such, we re-estimate our preferred specification on
restricted subsamples that exclude all observations for which fewer
than 10 and 30 students are enrolled in a given grade at a given
school in a given year and present the results in specifications (3) and
(4), respectively. Again, the coefficient estimates are broadly sim-
ilar and statistically indistinguishable from those in our preferred
specification.44

44 We also addressed two additional potential concerns related to confounding
cohort effects. The first potential concern is that cohort effects of those students in
the lowest grade of a school (g

j
) in t are not explicitly controlled for by Cgr

jt−1. Because

of the variation in g
j

in our sample, the estimates b̂gr for all grades g except kinder-
garten are all estimated off observations from a mix of school-grades with g

j
= g and

g
j

< g. Since this issue would only bias our results because of school-grades with
g

j
= g, we compared our main estimates with estimates from the restricted sample

of school-grades with g
j

< g and found no statistically significant differences. The
second potential concern is that students in the IV cohort of different races might
repeat the highest grade of the school at different rates. Since this issue would only
bias our results because of school-grades with ḡj = g, we followed the same logic as
above and compared our main estimates with estimates from the restricted sample of
school-grades with ḡj > g. Again, we found no statistically significant differences.
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Table B.5
Parental demand for schooling, 1995–2012: Robustness 2.

(1) (2) (3) (4)

r: W M W M W M W M

bKr −3.98∗∗ 1.28∗∗ −4.61∗∗ 1.29∗∗ −4.21∗∗ 1.63∗∗ −4.30∗∗ 1.52∗∗

(0.29) (0.18) (0.27) (0.14) (0.26) (0.11) (0.26) (0.10)
b1r −1.94∗∗ 1.32∗∗ −2.77∗∗ 0.98∗∗ −2.22∗∗ 1.45∗∗ −2.35∗∗ 1.43∗∗

(0.29) (0.16) (0.22) (0.11) (0.24) (0.10) (0.24) (0.10)
b2r −1.86∗∗ 0.84∗∗ −2.24∗∗ 0.61∗∗ −2.08∗∗ 1.07∗∗ −2.23∗∗ 1.01∗∗

(0.26) (0.19) (0.21) (0.12) (0.22) (0.12) (0.22) (0.11)
b3r −2.30∗∗ 0.99∗∗ −2.71∗∗ 0.57∗∗ −2.25∗∗ 1.09∗∗ −2.28∗∗ 0..94∗∗

(0.28) (0.16) (0.23) (0.12) (0.23) (0.11) (0.22) (0.11)
b4r −2.18∗∗ 1.03∗∗ −2.55∗∗ 0.87∗∗ −2.33∗∗ 1.25∗∗ −2.47∗∗ 1.11∗∗

(0.28) (0.16) (0.22) (0.10) (0.23) (0.10) (0.23) (0.09)
b5r −1.89∗∗ 0.97∗∗ −2.55∗∗ 0.89∗∗ −2.32∗∗ 1.32∗∗ −2.36∗∗ 1.18∗∗

(0.27) (0.15) (0.23) (0.11) (0.22) (0.10) (0.22) (0.09)
b6r −1.83∗∗ 2.00∗∗ −2.90∗∗ 2.44∗∗ −3.10∗∗ 2.58∗∗ −3.09∗∗ 2.47∗∗

(0.49) (0.32) (0.41) (0.27) (0.35) (0.18) (0.34) (0.19)
b7r −3.26∗∗ 2.42∗∗ −3.18∗∗ 2.38∗∗ −2.50∗∗ 2.16∗∗ −2.73∗∗ 2.03∗∗

(0.78) (0.71) (0.72) (0.64) (0.48) (0.31) (0.49) (0.34)
b8r −1.72* 3.26∗∗ −2.60∗∗ 3.13∗∗ −1.31∗∗ 2.78∗∗ −1.32∗∗ 2.47∗∗

(0.81) (0.72) (0.77) (0.49) (0.46) (0.30) (0.45) (0.30)
b9r −7.45∗∗ −1.08 −4.36∗∗ −0.12 −4.26∗∗ 0.50 −4.68∗∗ 0.31

(1.18) (0.75) (1.04) (0.63) (0.86) (0.43) (0.81) (0.45)
b10r −2.74∗∗ 1.01* −5.36∗∗ −0.04 −3.58∗∗ 0.70* −2.60∗∗ 0.50

(1.01) (0.49) (0.89) (0.47) (0.74) (0.31) (0.65) (0.31)
b11r −3.62∗∗ 1.11∗∗ −3.39∗∗ 1.45∗∗ −2.97∗∗ 1.68∗∗ −2.50∗∗ 1.70∗∗

(0.82) (0.48) (0.71) (0.45) (0.67) (0.32) (0.61) (0.32)
b12r −4.71∗∗ 0.33 −4.47∗∗ 1.64∗∗ −3.98∗∗ 1.49∗∗ −4.09∗∗ 1.20∗∗

(0.97) (0.55) (0.83) (0.44) (0.70) (0.35) (0.70) (0.37)
Grade-race-year-ZIP code FEs? No Yes Yes Yes
Grade-race-year-ZIP-grade range FEs? Yes No No No
R2 0.36 0.40 0.35 0.33
Num. obs. 361,866 268,672 344,814 323,784

Notes: The dependent variable is log enrollment by grade, race, school and year
(

log ngr
jt

)
and specifications include log n

gjW

jt−1, . . . , log n
ḡj−1W
jt−1 and log n

gjM

jt−1, . . . , log n
ḡj−1M
jt−1 as controls.

Specification (2) is estimated on a restricted subsample of school-years that offer instruction in the same grades as in the previous year. Specifications (3) and (4) are estimated
on restricted subsamples that exclude all observations for which fewer than 10 and 30 students are enrolled in a given grade at a given school in a given year respectively. Robust
standard errors clustered by grade, race, year and ZIP code are provided in parentheses.

∗ Statistically significant at the 95% level.
∗∗ Statistically significant at the 99% level

B.1.1. Simulation
In the empirical model above, sjt−1 enters linearly into parental

demand functions. This assumption is not overly restrictive in the
sense that it does not imply the existence or location of tipping points
or the locations of stable equilibria, but it does constrain the shape
of Sjt. We can modify Eq. (3) by specifying demand as

log ngr
jt = bgr (

sjt−1
)

+ a
gr
zt + f

(
n

−ḡjW
jt−1 , n

−ḡjM
jt−1

)
+ 4

gr
jt (B.1)

where bgr( • ) is now a flexibly specified function of the social amenity.
The flexible demand Eq. (B.1) can be estimated using appropriate non-

parametric techniques (Pagan and Ullah, 1999; Newey and Powell,
2003) to allow for multiple tipping points (and hence more than two
stable equilibria) or one-sided tipping behavior (Card et al., 2008b).

We re-estimate parental demand functions by flexibly specifying
bgr( • ) as a cubic B-spline (also known as “natural spline”) with knots
located at s = 0, 0.25, 0.5, 0.75, and1. Identification is made possi-
ble by the substantial within- and across-school variation in minority
share over our sample period.

In Fig. B.16 we present simulated S curves using the flexible
demand specification which we overlay on our baseline curves. The
curves are qualitatively similar in that they feature the same number
of tipping points and stable equilibria. The flexible specification

Fig. B.16. Tipping diagrams, flexible demand specification: Three schools. (a) Murray Elementary. (b) Jefferson Middle School. (c) San Antonio High. Note: Each panel plots the S
curve for a specific school in 2009. These panels can be compared to the panels of Fig. 5, which use a more restrictive linear specification.
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Fig. B.17. Tipping behavior: All schools, flexible demand specification, 1995–2012. (a) Existence of tipping behavior over time. (b) Histograms of tipping behavior. Note: Panel
(a) shows the share of schools that possess a tipping point, a stable White (s < 0.5) equilibrium and a stable minority (s > 0.5) equilibrium for each year. Panel (b) overlays
histograms of tipping points and stable equilibria across all school-year combinations in the sample. These panels can be compared to the panels of Fig. 6, which use a more
restrictive linear specification.

yields a higher level of implied minority share at lower levels of s,
which results in more integrated White stable equilibria and tipping
points at higher levels of minority share if they exist at all. We sum-
marize the results for our entire sample in Fig. 6. The existence of
tipping points and stable equilibria in the first panel is similar to
our baseline estimates, but the locations of tipping points and stable
equilibria in the second panel have shifted to slightly higher levels of
minority share (Fig. B.17).

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.jpubeco.2017.02.009.
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